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Abstract. The phase diagram of a driven two-dimensional vortex lattice in the presence of dense quasi-
point pins is investigated. The transition from the crystal to the liquid is found continuous at intermediate
inductions. The correlations in the pseudo random force that allow for an uncomplete unbinding of the
dislocations is proposed as a key mechanism to account for the continuous transition.

PACS. 64.60.Ht Dynamic critical phenomena — 74.60.Ge Flux pinning, flux creep and flux-line lattice

dynamics

1 Introduction

It has long been noticed that a driven elastic lattice driven
at zero temperature may experience pinning as an effective
shaking temperature, due to randomly induced displace-
ments of the lattice nodes. This powerful analogy allows
for the prediction of some properties of the driven lattice
from the common phase diagram of particles with a repul-
sive interaction. In particular, a dynamic melting transi-
tion is predicted and observed numerically [1]. However,
strongly disordered systems, as obtained in the presence of
strong quasi-point pins, may move aside from this picture.
Indeed, the thermal analogy may break down for the mov-
ing crystal due to temporal correlations of the pseudo ther-
mal Langevin force, a situation which is encountered in the
case of heterogeneous pinning involving plastic flow chan-
nels [2]. As a consequence, while this analogy accounts for
the existence of a first order-like dynamic transition, the
driven phases may differ from their thermodynamic ana-
logues. Several examples of such exotic phases have been
given in references [3-6]. The anisotropy of the pinning po-
tential, once tilted by the external force, is essential to the
formation of these phases [2,7]. Here, the dynamic tran-
sition is examined in detail for a simple system of dense
quasi-point pins with positional disorder. For part of the
phase diagram, it is found that there is a continuous tran-
sition between the crystal and the liquid, through what
might be called a liquid crystal, whereas the transition
is first order like for the rest of the phase diagram. In
the case of the continuous transition, disclinations tend
to form chains, which likely arise from the correlations of
the pseudo random force which are specific to the driven
lattice.

# e-mail: fruchter@lps.u-psud.fr

2 Experiment

The numerical sample used here is the one in reference [8].
It is the one of two dimensional particles with a repul-
sive interaction, interacting also with a random attractive
potential. The sample mimics a two dimensional vortex
lattice, or a three dimensional rigid vortex lattice, in the
presence of strong pins, as can be created by heavy ions
irradiation. Adopting the terminology of superconductors,
the vortex density is set by the magnetic induction, B, as
n = a0_2 = B/®, - $y being the flux quantum carried by
each vortex (2 x 1077 G cm?). The repulsive force between
vortices is taken as:

fou(r) = (Av /X) K1 (r/A) (1)

where K is a Bessel function, behaving as In 7—! at short
distance and 7~'/Zexp(—r) at large distance. To keep
computation tractable, the repulsive force is cut smoothly
at a distance 11ag, which insures that each particle inter-
acts with many of its closest neighbors.

The short range potential originates from strong pins
randomly distributed in the sample, each creating the at-
tractive force in the range rp:

fp(r)=(2Ap/rp) (r/rp), for r <rp; 0for r >rp. (2)

All pins are identical and the randomness of the potential
originates from the pins position only.

In the rest, driving current densities are normal-
ized to the single vortex critical current density, J. =
2 Ap/rp ®g. The density of the pinning sites, relative
to that of the vortices, Bg/B, is constant and equal
to 12. The pinning potential range, relative to the vor-
tex average separation, is also constant and equal to
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rp/ag = 5.5 X 1072, as well as the reduced force mag-
nitude, AAp/rpAy = 20. As a consequence, using ag as
the length scale, the different numerical experiments made
for different values of the induction B only differ by the
reduced vortex interaction length, A/ag, where it was set
A = 1400 A. As in [8], the total force on each vortex,
originating from its neighbors, a possible pinning site at
the vortex location and the uniform external force is com-
puted at each time step. Vortices which are not pinned are
then moved on a time interval small enough so that their
motion is small compared to all characteristic lengths. The
boundary conditions are periodic along the driving force
direction. A large area free from any pinning site is kept
at the sample edges parallel to the vortex motion, where
a perfect hexagonal lattice is obtained under the action of
the external magnetic pressure [8]. In this way, the mea-
surements actually sample the driven phase embbeded in
the crystal. Whereas such an interface may promote the
formation of the ordered phase in the case of a first order
transition and for finite samples, in the case of a contin-
uous transition, as will be discussed later, the interface
probably induces an interfacial layer only. In the follow-
ing, samples far enough from the interface are considered
and their uniformity is an indication that finite size effects
are not playing a major role when a continuous transition
is observed.

Experiments are carried out for different values of the
induction and of the external force. After a stationary
state is obtained (characterized by a steady average ve-
locity), a snapshot of the moving lattice is recorded, on
which a Delaunay triangulation is performed. Positive and
negative disclinations (vortices with coordinance 5 and 7),
either free or forming dislocations by pairs [9] are counted.
Samples typically enclose 7000 vortices and 4 x 10 pins.

3 Results and discussion

As shown in reference [8], as the driving force decreases,
the system evolves from a moving crystal to an amorphous
phase. Contrasting with the results in [3-5], the high ve-
locity phase does not show here smectic ordering, as evi-
denced from the diffraction pattern: this comes from the
small ratio r,/ag and from the fact that the tilted pinning
potential shows here a moderate anisotropy on the scale
of ag. There is no attractive interaction between the vor-
tices, which would allow for a transition between a liquid
and a gas. However, considering the comparable densities
of the crystal and the less ordered phase, as well as the
strong interactions between the vortices in the amorphous
phase, it must obviously be called a ‘liquid phase’. As evi-
denced in Figures 1 and 2 and the inspection of the average
hexatic parameter, [(Ws)| = [(1/ca D g1, 8@ 0as) |
where is ¢, the coordination number for vortex v and 6, g
is the angle of the bond between neighboring vortices «
and (3, some residual orientational correlation is retained
for low j (|(¥s)| ~ 0.1), which justifies to call the low j
phase an ‘hexatic liquid’ [4].

I now examine in more detail the transition between
the crystal and the liquid. For all systems, the concentra-
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Fig. 1. B = 3950 Oe. From top to bottom: Hexatic parameter,
concentration of defects (sites with coordination number not
equal to 6), concentration of free disclinations (defects bound
to sites with coordination number 6 only). The line is the fit
described in the text; the full line arrow indicates the onset for
the defects creation, as obtained from this fit; the dotted one
is the melting point as obtained in Figure 6.
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Fig. 2. B = 10* Oe.

tion of defects exhibits a clear onset upon decreasing the
driving force, similar to the one reported in [1]. However,
depending on the magnetic pressure, a discontinuous or
gradual rise of this concentration is observed. This may
be seen in Figures 1 and 2 obtained for two different mag-
netic inductions, which clearly exhibit respectively a grad-
ual and a step increase of the number of defects. In order
to quantify this observation, the defects concentration was
fitted with an exponential, ng o< 1 — exp[(jo — j)/0] (j <
Jo), vielding the onset, j,, and a width for the tran-
sition to the liquid phase, §. A phase diagram similar
to the temperature-density representation for the ther-
modynamics may be obtained, using the theory for the
equivalent ‘shaking temperature’ [1]. It should be stressed
that this representation is qualitative only, considering the
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Fig. 3. Dynamic phase diagram of the driven lattice. Circles:
j = Jo, triangles: j = j, — 9.

reservations made in references [1,2] (mainly, the pertur-
bative approach from the uniform velocity which rules out
plasticity, and the observation that the effective tempera-
ture differs for the fluidlike motion and the coherent one).
Also, the equivalent temperature in [1], must be modified
to account for the proximity of the flux flow to the flux
creep crossover. Imposing for the equivalent temperature
to be proportional to the potential well depth when j, — 1
and B — 0, T oc (1 — j), and using 7' o< j~! from [1], a
phase diagram is obtained in the B ws. (1 — j)/j repre-
sentation. The onset for the defects concentration (j,), as
well as the location where it saturates (j, — ), are plotted
in this way in Figure 3. Clearly, there is a range of mag-
netic induction for which a regime, intermediate between
the moving crystal and the hexatic liquid, can be found.
The existence of such a regime was already pointed out
in [8].

In order to characterize the continuous transition, let
us examine some autocorrelation functions which are clas-
sical tools for the study of solids and liquids. The aver-
age hexatic order parameter does not provide an accurate
characterization of the intermediate regime: as may be
seen in Figure 1, following a sharp drop at j = j,, there
is no significative change at lower j where the density of
defects however still exhibits significant variations. The
spatial correlations of the hexatic parameter carry more
useful information [9]. The correlator (¥g(0) ¥ (r)), for
the data in Figure 1 is shown in Figure 4. Besides the exis-
tence of a non zero background related to the non zero av-
eraged value |(Wg)|, it reveals some additional short range
correlations of the orientational order, which extends to
a larger range as the system is closer to j,. The oscilla-
tions for small r reflect the existence of a crystalline order
within this range: they are associated with the fluctua-
tions of the density autocorrelation function which come
with the translational symmetry breaking of the crystal
order. This is confirmed by the examination of the growth
of the displacement field (actually a positional correla-
tion function): (u%(r = n ag)) = (225 w(n [rj —r;]))
where j denotes one of the nearest neighbors of vortex 4
in a Delaunay triangulation and u is the displacement
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Fig. 4. The correlation function for the hexatic parameter.
(B = 3950 Oe).
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Fig. 5. The correlation function for the displacement field.
(B = 3950 Oe).

field from the periodic arrangement. As may be seen in
Figure 5, there is an exponential decay of the positional
correlations, with a diverging correlation length, £(7), as
one approaches jy from below (i.e. from larger ‘temper-
atures’). Following reference [9], one may then call this
regime an ‘hexatic liquid crystal’. It is possible to track
the positional correlation length in Figure 5 as one ap-
proaches jo. The result is diplayed in Figure 6 showing a
divergence as £ = & (1 — j/jo) !, with the bare correla-
tion length & ~ 0.15 ag. Recalling the Lindeman melting
criterion, (u?) = ¢2 a2 and the exponential increase of the
displacement field, (u?) = (u?(c0))(1 — exp(—r/£)), one
may write an equivalent melting criterion for the present
case as ag/¢ = In(1 — ¢2 a?/(u*(0))). The result ob-
tained using ¢y, ~ 0.2 and (u?(o0)) ~ 0.14, ag/€ ~ 0.3,
is displayed in Figures 1 and 6. Although this quantita-
tive result should be considered with caution, due to the
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Fig. 6. B = 3950 Oe. Correlation length for the positional
order, as obtained from the data in Figure 5. The full line
is a linear fit. The dotted line represents (u?) = ¢ ao with
cr, = 0.2. The melting point, as indicated by the dotted arrow,
is shown in Figure 1 also.

uncertainty on the effective Lindeman number, this con-
firms that the solid has not melted in the conventional
way below the threshold value jg.

The observation that the transition is continuous at
intermediate induction and involves a proliferation of de-
fects appeals for a comparison with the KTHNY exten-
sion of the Kosterliz-Thouless theory [9,10]. The theory
of dislocation mediated melting of two-dimensional solids
accounts for a continuous transition, involving first un-
binding of the dislocations leading to the hexatic liquid,
and then unbinding of the disclinations leading to the reg-
ular liquid. Here, dislocations do not first dissociate at
Jo to form an homogeneous ‘plasma’. Rather, they tend
to form chains of alternating positive (five-coordinated)
and negative (seven-coordinated) disclinations which pro-
liferate in the liquid phase. As a result, unbounded
dislocations and disclinations remain marginal (Fig. 7).
Correlations between dislocations were also reported in
reference [4] where free dislocations, although not bound
in chains, formed quenched patterns moving with the av-
erage flux flow. In order to explain the formation of these
chains, the examination of the early creation of defects in
a driven crystal may be useful. Snapshots of the earlier
defects detected in a sample driven in the intermediate
region in Figure 1 are displayed in Figure 8. After a dislo-
cation pair with opposite Burger vectors has been created
by the pinning of one vortex (a), it is seen that the disloca-
tions quickly arrange to form rings of diameter ~ 2 ag (c)
and then larger loops (d). Remarkably, the composite de-
fects reflect the external force anisotropy as soon as the
dislocations dissociate (b): this results from the plastic
mechanism at work to create these defects. This is also
a direct evidence that the correlations in the pseudo ran-
dom force cannot be neglected in their formation. The
relation between these initial stages and the formation of
chains is not completely clear. A possible mechanism is
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Fig. 7. Positive - five-coordinated (white) and negative - seven-
coordinated (black) disclinations in a sample driven along the
vertical axis. (B = 3950 Oe, j = 0.375).
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Fig. 8. Early steps for the creation of defects (B = 3950 Oe,
j = 0.375. Nodes of the Delaunay triangulation lines are vor-
tices. Filled and opened circles are disclinations as in Fig. 7;
gray circles indicate vortices which are located in a potential
minimum). Configurations a) and b) are obtained consecu-
tively as the result of the trapping of one vortex. Configu-
ration ¢) and d) are later steps. Vortices are driven to the top
of the figure.

the stretching of elementary loops as in Figure 8d, as the
vortices making disclinations appear to become more eas-
ily pinned than the regular ones. This would make the
long-range ‘random force’ correlations a key ingredient in
the chain formation again. Equivalent rates for the growth
and the annihilation of the chains would then account for
the existence of a stationary regime intermediate between
the crystal and the liquid.
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In conclusion, it is found that a vortex lattice driven on
dense quasi-point pins shows a continuous transition be-
tween the crystal and the liquid at intermediate induction,
while first order otherwise. The binding of the disclina-
tions in chains is proposed as a key mechanism to account
for the existence of the continuous transition.

Simulations have been performed on the cluster of the “Centre
de Ressources Informatiques de 'Université Paris-Sud (CRI)”.
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